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There is a wonderful connection between complex numbers (and quaternions,  as their extension) and geometry in which,
translations correspond to additions, rotations and scaling to multiplications, and reflections to conjugations.

However, the beauty of describing spatial rotations with quaternions is shadowed by an expression like:

1 - 2 Iy2 + z2M 2 x y - 2 w z 2 w y + 2 x z

2 x y + 2 w z 1 - 2 Ix2 + z2M 2 y z - 2 w x

2 x z - 2 w y 2 w x + 2 y z 1 - 2 Ix2 + y2M ÿ

ÿ ÿ

1 - 2 Iy2 + z2M 2 x y - 2 w z 2 w y + 2 x z

2 x y + 2 w z 1 - 2 Ix2 + z2M 2 y z - 2 w x

2 x z - 2 w y 2 w x + 2 y z 1 - 2 Ix2 + y2M
T

which actually represents such simple transformation as the rotation of moment of inertia tensor using quaternions [2].

The purpose of this document is to express spatial rotations of a moment of inertia tensor in the pure quaternionic form and to
highlight the algebraical meaning behind such rotations by proving some interesting theorems.

ü Conventions and Definitions
Load quaternions package (see Quat.nb for the annotated source code)

Get@ "Quat.m", Path −> 8 NotebookDirectory @D < D;

ô Conventions

In this document, matrices, vectors and matrix representation of quaternions are shown in uppercase font (roman-bold font in
text) and quaternions and other numbers are shown in lowercase font (italic font in text). Since the symbol I in Mathematica
is used for imaginary unit, the selected symbol for moment of inertia is the uppercase script J i.e. . The identity matrix is
suffixed with a number of dimensions, i.e. I4 represents the identity matrix in 4.

Matrices 4ä4 originated from quaternions may be geometrically partitioned into scalar (real), vector (pure imaginary) and
cross-product parts [3]. Such partitions are visualized using row and column divider lines throughout this document:

scalar É vector É

É É É É

vector¨ É cross product É

É É É É

ô General symbols and variables used in theorems (definitions)

Hamilton's quaternions q, q1  and q2  with real number components (but not with complex number components as biquater-
nions; see definition of default $Assumptions bellow):

q = 8@ w, x, y, z D;

q1 = 8@ w1, x1, y1, z1 D;

q2 = 8@ w2, x2, y2, z2 D;

Identity matrix I4 in 4:

I4 = IdentityMatrix@4D;



Common 4 matrices A and B:

A =

Aww Awx Awy Awz

Axw Axx Axy Axz
Ayw Ayx Ayy Ayz
Azw Azx Azy Azz

;

B =

Bww Bwx Bwy Bwz

Bxw Bxx Bxy Bxz
Byw Byx Byy Byz
Bzw Bzx Bzy Bzz

;

Symmetrical 4 matrix representing moment of inertia tensor :

1 =

1 0 0 0

0 Ixx Ixy Ixz
0 Ixy Iyy Iyz
0 Ixz Iyz Izz

;

Default assumption used for all asserted statements and expressions in this notebook is that previously defined entities q, q1,
q2, A, B and  are on field of , i.e. that their components are elements in :

$Assumptions = Flatten@8 ToList ê@ 8 q, q1, q2 <, A, B, 1< ∈ Reals;

ü Different Types of Multiplications
The ordirary notation for multiplication in Mathematica is

A .B multiplication between matrices ("dot" multiplication)
a ä b cross-product between 3D vectors
p ** q quaternion multiplication (both in Quat.m and Mathematica Quaternions package)

Beside the ordinary notation for multiplication, this document also introduces the following notation based on the center dot
(·) operator.

A ·B := multiplication between matrices
p · q := quaternion multiplication
q · A := column-wise quaternion-matrix multiplication

Note that the center dot operator in Mathematica is without built-in meaning.

ô Matrix multiplication

Define center dot operator A ·B as matrix multiplication (otherwise, Mathematica  uses plain dot "." for matrix multiplica-
tions).

CenterDot@ m__ ?MatrixQ D := Dot@ m D

ô Quaternion multiplication

Mathematica  uses non-commutative multiply (**) operator as symbol for quaternion multiplication. The Quat.m  package
and this document follow this convention. Here we define also the center dot operator as symbol for quaternion multiplica-
tion, just for convinience and esthetics

CenterDot@ q__ ?8Q D := NonCommutativeMultiply@ q D
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ô Column-wise (or horizontal) quaternion-matrix multiplication

Let us now define multiplication between quaternion q and matrix M, where it is assumed that matrix is a row vector of
quaternions  in columns, i.e. M = H q1 q2 ... qn L,  so that  quaternion multiplication  is done between q  and q j  in every
column j. 

q ÿ

q11 q12 q1n

q21 q22 q2n

q31 q32 ... q3n

q41 q42 q4n

:=

q11 q12 q1n

q21 q22 q2n

q31 q32 ... q3n

q41 q42 q4n

q1 q qnq j = q q jqnq j q q1

Since the quaternion multiplication is not commutative, there are several cases to distinguish:

a) Left multiplication q ÿM, where a quaternion in each column in M is multiplied by the quaternion q from the left:

CenterDot@ q_?8Q, mat_?MatrixQ D := Transpose@

TableA
ToListA q ⋅ To8@matPAll,jT E, 9j, 1, Dimensions@matDP2T=

E

b) Right multiplication M ÿ q, where a quaternion in each column in M is multiplied by the quaternion q from the right:

CenterDot@ mat_?MatrixQ, q_?8Q D := Transpose@

TableA
ToListA To8@matPAll,jT ⋅ q E, 9j, 1, Dimensions@matDP2T=

E

c) Compound multiplication from both sides p ÿM ÿ q, where multiplication of each column in M by the quaternion p from the
left and q from the right:

CenterDot@ q1_?8Q, mat_?MatrixQ, q2_?8Q D := Transpose@

TableA
ToListA q1 ⋅ To8@matPAll,jT ⋅ q2 E, 9j, 1, Dimensions@matDP2T=

E

The multiplication between a quaternion and a matrix is associative, i.e. it holds:

      q1 ÿM ÿ q2 ã q1 ÿ HM ÿ q2L ã Hq1 ÿML ÿ q2

which is proved as a theorem in the following sections.

Note that  for a single column matrix M,  the multiplication  between a quaternion and a matrix falls back to an ordinary
quaternion multiplication.

ô Row-wise (or vertical) quaternion-matrix multiplication

Row-wise quaternion-matrix multiplication can be defined by transposing matrices and using column-wise multiplication:

      I q1 ÿM ÿ q2 M
ô Conj[] matrix operator

Conj[] operator conjugates only the vector part of the matrix, but not the scalar and the cross product parts:

Conj@ q_?MatrixQ D :=

qP1,1T −qP1,2T −qP1,3T −qP1,4T
−qP2,1T qP2,2T qP2,3T qP2,4T
−qP3,1T qP3,2T qP3,3T qP3,4T
−qP4,1T qP4,2T qP4,3T qP4,4T

Note that Conj[] is not a conjugate of a quaternion! The conjugate of a quaternion corresponds to the plain transpose of the
matrix.
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Idea behind quaternion-matrix multiplication

Basic idea behind the quaternion-matrix multiplication comes from an expression:

AssertA
8@ 1, 0, 0, 0 D m q ⋅8@ 1, 0, 0, 0 D⋅q∗,
Assumptions → †q§2 m 1

E

¢ True Hafter SimplifyL 

for which it is assumed to be also valid when transforming identity matrix I4 that is equvalent representation of the quater-
nion [ 1, 0, 0, 0 ] in matrix form, i.e. that there should be kind of multiplication where:

AssertB

H 1 0 0 0 L¨ m q ⋅ H 1 0 0 0 L¨ ⋅ q∗,

Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 

ü Theorems
ô Quaternion-matrix multiplication

Quaternion multiplication associativity (sanity-check):

q1⋅ q ⋅q2 m q1⋅H q ⋅ q2L m Hq1⋅qL⋅q2 êê Assert

¢ True 

Quaternion-matrix multiplication associativity theorems:

q1⋅ A ⋅ q2 m q1⋅H A ⋅q2 L m H q1⋅ A L⋅q2 êê Assert

¢ True 

q ⋅ A ⋅q∗ m H q ⋅ A L ⋅q∗ êê Assert

¢ True 

q ⋅ A ⋅q∗ m q ⋅H A ⋅q∗ L êê Assert

¢ True 

H q ⋅I4 L¨ m q∗ ⋅ I4 êê Assert

¢ True 

H I4⋅q L¨ m I4⋅q∗ êê Assert

¢ True 

Hq ⋅ I4L ⋅ A m q ⋅ A êê Assert

¢ True 

HI4⋅qL ⋅ A m A ⋅ q êê Assert

¢ True 

Hq1⋅I4L⋅HI4⋅q2L m q1⋅I4⋅q2 êê Assert

¢ True 
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HI4⋅q2L⋅H Hq1⋅ I4L⋅ A L m Hq1⋅ AL ⋅q2 m q1⋅ A ⋅ q2 êê Assert

¢ True Hafter SimplifyL 

HI4⋅q2L⋅Hq1⋅I4L⋅ A m q1⋅ A ⋅ q2 Ï
HI4⋅ q2L ⋅Hq1⋅ I4L ⋅ A m q1⋅ A ⋅q2 Ï
Hq1⋅ I4L ⋅HI4⋅ q2L ⋅ A m q1⋅ A ⋅q2 Ï
Hq1⋅ I4⋅ q2L⋅ A m q1⋅ A ⋅ q2 êê Assert

¢ True Hafter SimplifyL 

Conjugations of quaternion-matrix multiplications:

Conj@ q ⋅ A D m Conj@AD⋅q∗ êê Assert

¢ True 

Conj@ A ⋅q D m q∗ ⋅ Conj@AD êê Assert

¢ True 

Conj@ q1⋅ A ⋅q2D m Conj@ q1⋅HA ⋅q2LD m Conj@A ⋅ q2D ⋅q1∗ m q2∗ ⋅Conj@AD⋅q1∗ êê Assert

¢ True Hafter SimplifyL 

Conj@ q ⋅ A ⋅ q∗D m q ⋅Conj@AD⋅q∗ êê Assert

¢ True Hafter SimplifyL 

ô Left and right rotation matrices

Because the quaternion  multiplication  is  bilinear,  it  can be expressed in a matrix form, and in two different ways ([1]).
Multiplication on the left qp gives Lq ÿp where p is now treated as a 4-dimensional column vector p and multiplication on the
right pq gives p ÿRq. 

Let us define Lq and Rq as quaternion-multiplication with identity matrix:

ClearAll@ L, R, Q D

Lq_ := q ⋅I4

Rq_ := I4⋅ q

Qq_ := Lq ⋅ Rq∗

Proof that the quaternion multiplication can be decomposed into L&R matrix parts and that Lq Rq*  p corresponds to q pq* :

AssertA
Lq ⋅Rq∗ ⋅ ToVector@q1D m ToVector@ q ⋅q1⋅q∗ D,
Assumptions → †q§2 m 1

E

¢ True Hafter SimplifyL 

ô Properties of L, R and Q matrices

Lq∗ m ILqM¨ êê Assert

¢ True 

Rq∗ m IRqM¨ êê Assert

¢ True 

I q ⋅Rq∗ M⋅ A m q ⋅I Rq∗ ⋅ A M m ILq ⋅ A M⋅q∗ êê Assert

¢ True Hafter SimplifyL 
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Qq m Lq ⋅Rq∗ m IRq∗
¨ ⋅ Lq̈M

¨
m IRq ⋅ Lq∗M¨ m Rq∗ ⋅Lq êê Assert

¢ True 

Qq∗ m Rq ⋅Lq∗ == Lq∗ ⋅ Rq êê Assert

¢ True 

Qq ⋅Qq∗ m †q§4 I4 êê Assert

¢ True Hafter SimplifyL 

ConjALq ⋅ A E⋅ q∗ m ConjA q ⋅ILq ⋅ AM E êê Assert

¢ True Hafter SimplifyL 

ConjALq ⋅ A E⋅ q∗ m ConjALq ⋅ AE⋅ q∗ êê Assert

¢ True 

ô L & R matrices components

Grid@9
9 "Lq", "Lq∗", "Rq", "Rq∗" =,
9 Lq êê QForm, Lq∗ êê QForm, Rq êê QForm, Rq∗ êê QForm =
=

Lq Lq∗ Rq Rq∗

w −x −y −z

x w −z y

y z w −x

z −y x w

w x y z

−x w z −y

−y −z w x

−z y −x w

w −x −y −z

x w z −y

y −z w x

z y −x w

w x y z

−x w −z y

−y z w −x

−z −y x w

ô Rotation matrix Q components

Grid@9
9 "Qq m Lq⋅Rq∗ m Rq∗⋅Lq", "Qq∗ m Lq∗⋅Rq m Rq⋅Lq∗" =,
9 SimplifyA Qq, Assumptions → †q§2 m 1 E êê QForm,
SimplifyA Qq∗, Assumptions → †q§2 m 1 E êê QForm =

=

Qq m Lq⋅Rq∗ m Rq∗⋅Lq Qq∗ m Lq∗⋅Rq m Rq⋅Lq∗

1 0 0 0

0 1 − 2 y2 − 2 z2 2 x y − 2 w z 2 Hw y + x zL
0 2 Hx y + w zL 1 − 2 x2 − 2 z2 −2 w x + 2 y z

0 −2 w y + 2 x z 2 Hw x + y zL 1 − 2 x2 − 2 y2

1 0 0 0

0 1 − 2 y2 − 2 z2 2 Hx y + w zL −2 w y + 2 x z

0 2 x y − 2 w z 1 − 2 x2 − 2 z2 2 Hw x + y zL
0 2 Hw y + x zL −2 w x + 2 y z 1 − 2 x2 − 2 y2

ô Shoemake's rotation matrix from quaternion

Classical Shoemake's form of the rotation matrix from a quaternion is given as (a transformation matrix based on the Cayley-
Klein parameters; see [2]):

RotationMatrix4@ q D êê QForm

1 0 0 0

0 1 − 2 Iy2 + z2M 2 x y − 2 w z 2 w y + 2 x z

0 2 x y + 2 w z 1 − 2 Ix2 + z2M −2 w x + 2 y z

0 −2 w y + 2 x z 2 w x + 2 y z 1 − 2 Ix2 + y2M
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ô Scalar, vector and cross-product parts of L&R matrices

Scalar part:

1

2
 ILq + Lq∗M m

1

2
 IRq + Rq∗M m

w 0 0 0

0 w 0 0
0 0 w 0
0 0 0 w

êê Assert

¢ True 

Vector part:

1

2
 ILq∗ − RqM ==

1

2
 IRq∗ − LqM m

0 x y z

−x 0 0 0
−y 0 0 0
−z 0 0 0

êê Assert

¢ True 

1

2
 ILq − Rq∗M ==

1

2
 IRq − Lq∗M m

0 x y z

−x 0 0 0
−y 0 0 0
−z 0 0 0

¨

êê Assert

¢ True 

Cross product part:

1

2
 ILq − RqM m

0 0 0 0

0 0 −z y
0 z 0 −x
0 −y x 0

êê Assert

¢ True 

1

2
 ILq∗ − Rq∗M m

0 0 0 0

0 0 −z y
0 z 0 −x
0 −y x 0

¨

êê Assert

¢ True 

Q ·Q + 2Q · (vector part) form.
Note that the vector part is a pure imaginary part of a quaternion.

To8@0 m q2 + 2 q ⋅ To8@Im@q∗D − †q§2 êê Assert

¢ True 

AssertB Qq == Lq ⋅Lq + 2 Lq ⋅

0 x y z

−x 0 0 0
−y 0 0 0
−z 0 0 0

m Lq ⋅Lq + 2 Lq ⋅
1

2
 IRq∗ − LqM

m Lq ⋅Rq∗

F

¢ True Hafter SimplifyL 

1

2
 Lq−1 ⋅ILq ⋅ Lq − QqM ==

1

2
 ILq − Rq∗M êê Assert

¢ True Hafter SimplifyL 
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Equality of rotation matrix from quaternion and Euler-Rodrigues' formula

Euler-Rodrigues' formula for the rotation matrix corresponding to a rotation by an angle q about a fixed axis specified by the
unit vector u.

Reference: http://mathworld.wolfram.com/RodriguesRotationFormula.html

EulerRodrigues@ θ_, 8 x_, y_, z_ < D :=

Cos@θD 

1 0 0
0 1 0
0 0 1

+ H1 − Cos@θDL 

x x y x z x
x y y y z y
x z y z z z

+ Sin@θD 

0 −z y
z 0 −x

−y x 0

Proof that the rotation matrix from a quaternion (as defined in Quat.m package) is equivalent to Euler-Rodrigues' formula.

BlockA 8 x, y, z, θ, q <,
q = To8$AngleAxis@ θ, 8 x, y, z < D;
AssertA
RotationMatrix@ q D m EulerRodrigues@ θ, 8 x, y, z < D,
Assumptions →

−π ≤ θ ≤ π Ï x2 + y2 + z2 m 1Ï 8 x, y, z, θ < ∈ Reals
E

E

¢ True Hafter SimplifyL 

ô Rotation matrix theorems

RM = RotationMatrix4@ q D;
RM êê QForm

1 0 0 0

0 1 − 2 Iy2 + z2M 2 x y − 2 w z 2 w y + 2 x z

0 2 x y + 2 w z 1 − 2 Ix2 + z2M −2 w x + 2 y z

0 −2 w y + 2 x z 2 w x + 2 y z 1 − 2 Ix2 + y2M
AssertB

RM m Qq m Lq ⋅Rq∗ Ì
RM¨ m Qq∗ m Rq∗

¨ ⋅ Lq̈,

Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 

AssertA
RM ⋅ToVector@q1D

m Lq ⋅ Rq∗ ⋅ToVector@q1D
m ToVector@ q ⋅ q1⋅ q∗ D,

Assumptions → †q§2 m 1
E

¢ True Hafter SimplifyL 
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AssertB
RM ⋅ A ⋅RM¨

m Qq ⋅ A ⋅ Qq∗

m Lq ⋅ Rq∗ ⋅ A ⋅Lq∗ ⋅ Rq

m J q ⋅ H q ⋅ A ⋅ q∗ L¨ ⋅ q∗ N
¨
,

Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 

AssertB
I4

m Hq ⋅I4⋅q∗L⋅I4⋅Hq ⋅ I4⋅ q∗L¨

m ILq ⋅Rq∗M⋅ I4⋅ ILq ⋅ Rq∗M¨

m Lq ⋅ Rq∗ ⋅I4⋅Rq∗
¨ ⋅ Lq̈

m Lq ⋅ IRq∗ ⋅I4⋅Rq∗
¨ M⋅Lq̈,

Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 

AssertB
RM ⋅ A ⋅RM¨

m Hq ⋅I4⋅q∗L⋅ A ⋅Hq ⋅ I4⋅ q∗L¨

m ILq ⋅Rq∗M⋅ A ⋅ ILq ⋅ Rq∗M¨

m Lq ⋅ Rq∗ ⋅ A ⋅Rq∗
¨ ⋅ Lq̈

m Lq ⋅ IRq∗ ⋅ A ⋅Rq∗
¨ M⋅Lq̈,

Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 

Proof that both Qq and RM  are orthogonal matrices:

AssertB
Qq ⋅Qq̈

m ILq ⋅Rq∗M⋅ ILq ⋅ Rq∗M¨

m Lq ⋅Rq∗ ⋅IRq∗M¨ ⋅ILqM¨

m Lq ⋅Rq∗ ⋅Rq ⋅Lq∗

m I4,
Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 
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AssertA
Qq ⋅Qq̈

m Qq ⋅Qq∗

m RM ⋅ RM¨
m I4,

Assumptions → †q§2 m 1
E

¢ True Hafter SimplifyL 

ô Quaternionic meaning of RHqL ◊A ◊RHqLT

The hint how quaternion multplication affects a (moment of inertia or any other) tensor A can be seen from the earlier proven
theorem:

AssertB

RM ⋅ A ⋅RM¨ m J q ⋅H q ⋅ A ⋅q∗ L¨ ⋅q∗ N
¨
,

Assumptions → †q§2 m 1

F

¢ True Hafter SimplifyL 

which shows that the tensor A is rotated, at first, by rotating quaternions across each column Ac = q ÿA ÿ q*, and at second, by

rotating quaternions across each row Arc = Iq ÿ HAcL ÿ q*M .

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44

q ÿ H L

H L ÿ q*

q ÿ H L H L ÿ q*

The meaning of the compound multiplications across columns and rows is extracting and affecting individual components of
quaternions embedded from the previous rotations of the tensor. The moment of inertia tensor can always be reduced to its
principal axes in diagonal form. In a matrix representation of a quaternion, the diagonal of the matrix contains the repeated
scalar  (real)  part of the quaternion.  (For any quaternion q  there exist  quaternion p  such that qp  is scalar.) The principal
moment of inertia, on the other hand, has on its diagonal three different scalars in general case, which gives origin to three
different quaternions that are embedded and independently shuffled across-columns/rows during rotations.
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